

REASONS TO CHOOSE MICRONET®

The Competitive Advantage

CGuard[™] EPS (Embolic Prevention System) with MicroNet[®] has the smallest existing pore size for embolic prevention and unrivalled permanent plaque exclusion

Plaque prolapse

After CAS, plaque prolapse may result, with dislodgement of thrombotic materials causing embolic events ¹

Up to a third of conventional carotid stents have 30 day events due to plaque prolapse $^{\rm 2}$

CGuard[™] EPS has the lowest incident rate of plaque prolapse in comparison to both conventional and other dual-layer/mesh carotid stents (P=0.05) ³

Plaque prolapse with competitor stents

Plaque prolapse is excluded with CGuard™ EPS MicroNet[®] Sleeve

CGuard[™] EPS: open cell flexibility with MicroNet[®] closed cell protection

CGuard[™] EPS with Micronet[®] combines the benefits of open cell conformability, with the MicroNet[®] closed cell plaque scaffolding, providing continuous embolic prevention ^{1,2}

The Micronet[®] on CGuard[™] EPS has a pore size as small as165µ ³.

The next smallest pore size of other carotid stents is 375μ (Nitinol mesh internal to stent) $^{\rm 6}$

Excellent Long Term Results with CGuard[™] EPS

101 All-comer Patients included in the PARADIGM Study No post-procedural device related events at 3 year follow-up

Data to 12 months (PARADIGM Study)

No post-procedural device related events at 12 month follow up

1% ISR

97% patent ECA

CGuard[™] EPS

SYSTEM SPECIFICATIONS

Size:	Diameter	6 mm-10 mm		
	Length*	20 mm-60 mm		
Guiding C	Catheter Compatibility	8F (ID: >2.20 mm or 0.086")		
Vascular	Sheath Compatibility	6F (ID: >2.20 mm or 0.086")		
Rapid ex	change (RX) Delivery System	6F (0D: 2.03 mm)		
Usable C	atheter Length	135 cm		
Guidewir	re Compatibility	0.014"		
MicroNe	t® Material	PET		
Fiber Siz	e	20 µm		
Aperatur	re Size**	150 μm - 180 μm		
Stent Ma	terial	Nitinol		
Strut Thi	ckness	240 μm ± 12 μm		

- 6 French delivery system
- Self-expanding
- Rapid exchange
- Minimal foreshortening
- Highly visible under all modalities
- Allows perfusion to ECA
- Precise placement accuracy
- Optimal endothelialization
- Second Se

TABLE OF SIZES

	Diameter (mm)								
		6	7	8	9	10			
Length [mm]	20	CRX0620	CRX0720	CRX0820	CRX0920	CRX1020v			
	30	CRX0630	CRX0730	CRX0830	CRX0930	CRX1030			
	40	CRX0640	CRX0740	CRX0840	CRX0940	CRX1040			
	60*	CRX0660		CRX0860		CRX1060			

* 60mm sizes are not available in Australia

** Average in Vessel

Contact Information: InspireMD Inc. Info@inspiremd.com clinical@inspiremd.com www.inspiremd.com

Not available for sale in the USA

1. https://www.sciencedirect.com/science/article/pii/S0741521412012669- Mousa et al - 2012

2. Annals of SurgeryVolume 246, Issue 4, October 2007, Pages 551-556

3. https://www.jvascsurg.org/article/S0741-5214[17]30473-1/fulltext- De Donato et al-2017